合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 基于表面張力等分析油酸鈉體系下磁化處理對赤鐵礦和石英浮選分離效果的影響
> CO2泡沫穩(wěn)定性原理、影響因素|CO2-EOR機(jī)理與應(yīng)用前景(二)
> 低滲透油藏表面活性劑降壓增注效果影響因素
> 磁化水表面張力是多少
> 水性油墨的基本配方及成分
> LB膜技術(shù)在界面相互作用研究中的應(yīng)用
> LB膜分析儀應(yīng)用:不同初始表面壓力條件對VhPLD的磷脂吸附親和力影響(二)
> 藥物制劑中常用的非離子型表面活性劑
> 肺內(nèi)液表面張力的作用、臨床意義及測量方法(二)
> 氟硅表面活性劑(FSS)水溶液表面張力、發(fā)泡力、乳化力測定(二)
推薦新聞Info
-
> 界面張力主導(dǎo):殘余氣飽和度的深部咸水層CO2封存潛力評估(三)
> 界面張力主導(dǎo):殘余氣飽和度的深部咸水層CO2封存潛力評估(二)
> 界面張力主導(dǎo):殘余氣飽和度的深部咸水層CO2封存潛力評估(一)
> 兩類農(nóng)用防霧涂層表面張力的深度計算與比較分析(二)
> 兩類農(nóng)用防霧涂層表面張力的深度計算與比較分析(一)
> 藥液表面張力、噴霧方法對霧滴在水稻植株上沉積的影響(三)
> 藥液表面張力、噴霧方法對霧滴在水稻植株上沉積的影響(二)
> 藥液表面張力、噴霧方法對霧滴在水稻植株上沉積的影響(一)
> 烷基二苯醚/烷基苯混合磺酸鹽靜態(tài)表面張力、金屬腐蝕性及凈洗力測定(二)
> 烷基二苯醚/烷基苯混合磺酸鹽靜態(tài)表面張力、金屬腐蝕性及凈洗力測定(一)
基于界面張力儀和電位儀分析SPF減水劑結(jié)構(gòu)-性能關(guān)系(二)
來源:武漢理工大學(xué)學(xué)報 瀏覽 334 次 發(fā)布時間:2025-11-25
2.2 SPF減水劑表面張力分析
減水劑是一種表面活性劑,不同濃度下SPF、AS和AH3種高效減水劑溶液表面張力見圖3。
從圖3可知,SPF、AS和AH3種高效減水劑溶液的表面張力隨著高效減水劑濃度的增大而減小,SPF減水劑能降低水的表面張力,但沒有AS、AH降低得多,其主要原因是AS、AH在氣液界面的取向能力大且對混凝土有一定的引氣作用,而SPF不能明顯降低溶液表面張力,其對水泥顆粒分散作用中濕潤作用貢獻(xiàn)較小。
2.3 SPF減水劑電位分析
1)SPF對水泥顆粒表面電位的影響ξ電位表示水泥顆粒間靜電排斥力的大小。ξ電位越大水泥顆粒間的靜電斥力越大,減水劑分散作用越強(qiáng)。摻加不同濃度SPF、AS和AH的水泥懸浮體系的ξ電位,如圖4所示。
從圖4可知,加入SPF、AS和AH減水劑后隨著濃度的增大,ξ電位由負(fù)變化到更負(fù)且絕對值增大,隨著減水劑濃度的增大ξ電位的絕對值增大,當(dāng)減水劑濃度增大到5g/L時,ξ電位增加緩慢。未水化的水泥顆粒表面的電位在-10mV左右,而摻加SPF、AS和AH后水泥顆粒表面的電位分別為-10—15mV和-10—20mV,加入SPF高效減水劑后電位絕對值最大,在水泥顆粒表面產(chǎn)生的靜電斥力最大。
2)SPF對水泥顆粒表面電位穩(wěn)定性的影響從圖5可知,摻SPF、AS和AH減水劑的水泥顆粒表面起始電位很高,其中加入SPF高效減水劑后電位最大,達(dá)到了-15mV,隨著時間的推移摻SPF、AS和AH的水泥顆粒表面電位與起始電位相比有一定的變化,在120min以后,摻SPF減水劑水泥顆粒表面電位與起始電位相比有一定的減小。
2.4 SPF高效減水劑應(yīng)用性能評價
1)SPF減水劑的摻量與減水率的關(guān)系SPF減水劑的減水率以及SPF減水劑不同摻加量對混凝土的凝結(jié)時間和不同齡期強(qiáng)度的影響的混凝土配合比如表3所示。選用水泥是中國水泥廠的小野田P52.5水泥,砂率36%—40%,碎石粒徑范圍5—40mm連續(xù)級配,小石占40%,大石占60%,控制坍落度在7—9cm。
表3 SPF減水率實(shí)驗(yàn)配合比
| 編號 | 配合比 | 外加劑 | ||||||
| 水泥/kg | 砂/kg | 大石/kg | 小石/kg | 摻量/% | 用量/kg | 用水量/kg | 塌落度/cm | |
| 0 | 330 | 710 | 695 | 463 | 0 | 0 | 200 | 8.2 |
| 1 | 330 | 710 | 695 | 463 | 0.3 | 2.828 | 184.8 | 9.0 |
| 2 | 330 | 710 | 695 | 463 | 0.4 | 3.771 | 173.5 | 9.0 |
| 3 | 330 | 710 | 695 | 463 | 0.5 | 4.714 | 166.5 | 9.0 |
| 4 | 330 | 710 | 695 | 463 | 0.6 | 5.657 | 160.3 | 9.0 |
從圖6可以看出,隨著外加劑摻量的增大,減水率有成比例增加的趨勢,SPF低摻量下即具有較強(qiáng)的減水分散效果,在摻量為0.5%時減水率已達(dá)到18.3%,繼續(xù)增加摻量后減水率處于平緩狀態(tài)。混凝土的和易性良好,不離析、不泌水。
2)不同摻量的SPF減水劑的強(qiáng)度發(fā)展規(guī)律制得的SPF在摻加0.3%—0.6%過程中,混凝土在不同齡期的抗壓強(qiáng)度,如圖7所示。
從圖7看到隨著減水劑摻量的增加,各組配比混凝土的3d、7d、28d不同齡期的抗壓強(qiáng)度都在增加,減水劑SPF摻量0.6%時,混凝土的抗壓強(qiáng)度達(dá)到34.39MPa、45.66MPa、55.48MPa,是同齡期的空白混凝土強(qiáng)度的174%、166%、153%,SPF減水劑對混凝土有明顯的增強(qiáng)作用,同時摻加SPF減水劑的混凝土早期強(qiáng)度發(fā)展很快,3d的強(qiáng)度可以達(dá)到28d強(qiáng)度的60%—70%,7d的強(qiáng)度可以達(dá)到28d強(qiáng)度的80%—90%,混凝土的后期強(qiáng)度也有增長的趨勢。
3結(jié)論
a.SPF高效減水劑脂肪族分子中含有磺酸基、羥基和羰基等官能團(tuán)。羥基和磺酸基是強(qiáng)的親水基。重均分子量(Mw)在18000—22000之間,數(shù)均分子量(Mn)在16000—18000之間,多分散性系數(shù)為1.11,產(chǎn)物的分子量分布較窄,大分子聚合物較少,小分子聚合物較集中。
b.SPF高效減水劑不能明顯降低溶液表面張力,隨著SPF高效減水劑濃度的增大,ξ電位由負(fù)變化到更負(fù)且絕對值增大,減水劑濃度增大到5g/L時,ξ電位增加緩慢,摻SPF高效減水劑的水泥顆粒表面起始ξ電位最大,隨著時間的推移摻SPF減水劑水泥顆粒表面ξ電位與起始ξ電位相比有一定的減小。
c.SPF高效減水劑應(yīng)用性能研究表明,隨著摻量的增大,減水率有成比例增加的趨勢,低摻量下即具有較強(qiáng)的減水分散效果,繼續(xù)增加摻量后減水率處于平緩狀態(tài)。摻加SPF高效減水劑對混凝土有明顯的增強(qiáng)作用,隨著減水劑摻量的增加,不同齡期的抗壓強(qiáng)度都在增加,同時混凝土早期強(qiáng)度發(fā)展很快,3d的強(qiáng)度可達(dá)到28d強(qiáng)度的60%—70%,7d強(qiáng)度可達(dá)到28d強(qiáng)度的80%—90%,混凝土后期強(qiáng)度也有增長的趨勢。





